

Available online at www.sciencedirect.com

BIOORGANIC CHEMISTRY

Bioorganic Chemistry 34 (2006) 105-113

www.elsevier.com/locate/bioorg

Alkylation reactions of phosphachroman-2,4-diones and 4-hydroxy phosphacoumarins

Xueshu Li a, Yitong Wang a, Hua Fu a,*, Yuyang Jiang a,b, Yufen Zhao a

a Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China ^b Key Laboratory of Chemical Biology, Guangdong Province, Graduate School of Shenzhen, Tsinghua University, Shenzhen 518057, PR China

Received 21 November 2005

Abstract

Phosphachroman-2,4-dione and 4-alkoxyphosphacoumarin derivatives, phosphonic analogues of chromones and coumarins with potential biological activities, were synthesized in good yields through sequential base-catalyzed intramolecular cyclization of O-alkyl-O'-(2'-methoxycarbonyl phenyl)-(substituted) benzyl phosphonates and alkylation. The synthesis sets the stage for an examination of the biological activities.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Phosphachroman-2,4-dione; Phosphacoumarin; Intramolecular cyclization; Alkylation

1. Introduction

Chromones and coumarins, two kinds of important natural products with various biological activities, have attracted great interest in the area of pharmacology [1]. Many chromones and coumarins were synthesized leading to molecules with more potent medicinal

Corresponding author. Fax: +86 10 62781695. E-mail address: fuhua@mail.tsinghua.edu.cn (H. Fu).

chromone
$$P = 0$$
 $P = 0$
 P

Fig. 1. The structure of chromones, coumarins, and their analogs phosphachromones, phosphacoumarins.

and biological activities [2]. The development of phosphorus chemistry has led to organophosphorus compounds that have applications in the area of pharmacy [3], agriculture [4], and synthetic chemistry [5]. Phosphonic acids and their derivatives often exhibit similar biological activity to the natural carboxylic acids and their derivatives [6] because the former are similar to the tetrahedral intermediates of the latter. Hence, introduction of the phosphorus atom into coumarins and chromanones to form phosphachromones and phosphacoumarins (Fig. 1) may result in the development of new molecules with biological activities. Chen and Rodios's groups [7] have synthesized phosphacoumarins by a condensation reaction of salicylaldehyde with triethylphosphonoacetate in low yields (not more than 21%), and the major products were phosphonocoumarins. Mironov et al. [8] have also reported the preparation of 4-aryl phosphacoumarin using benzene-1,2-diol and substituted phenyl acetylene as the starting materials.

In our previous work [9], a convenient and efficient approach to 4-O-acylated, phosphorylated and sulfonylated phosphacoumarins has been developed through reactions of phosphachroman-2,4-diones and 4-hydroxy phosphacoumarins with acetic anhydride, diethoxylphosphoryl chloride, *p*-toluenesulfonyl chloride, and methylsulfonyl chloride. In order to enrich the library of phosphacoumarins, we attempted reactions of phosphachroman-2,4-diones and 4-hydroxy phosphacoumarins with alkyl halides, and a mixture of O-alkylation and C-alkylation products was obtained in different ratios. To the best of our knowledge, the C-alkylation products, phosphachromones have not been reported so far.

2. Materials and methods

¹H, ³¹P, and ¹³C NMR spectra were recorded on a JEOL JNM-ECA 300 spectrometer using tetramethylsilane as the internal standard. High resolution mass spectra were recorded on a Bruker APEX-II Fourier transform ion cyclotron resonance (FT-ICR) MS instrument equipped with 4.7 T super-conduction magnet and an analytical electrospray source.

2.1. General procedure for the preparation of 3 and 4

Anhydrous K_2CO_3 (1 mmol) was added to mixture of 1 and 2 (0.5 mmol) in 5 mL of anhydrous acetonitrile, and the mixture was stirred for 20 min. Methyl iodide, benzyl bromide or allyl bromide (0.6 mmol) in 2 mL of acetonitrile was then added dropwise

within 10 min. The mixture was stirred at room temperature for another 1 h, 10 mL of dichloromethane was added to the resulting solution, and filtered. The solid was washed with dichloromethane $(2 \times 5 \text{ mL})$, and the filtrate was combined. The solvent was removed by rotary evaporation, and the residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1-2:1) as eluent to give 3 and 4.

2.2. The numbers of the core structure

2.3. 2-Ethoxy-3-methyl-3-(4-methylphenyl)-phosphachroman-2,4-dione (3ag) and 2-ethoxy-3-(4-methylphenyl)-4-methoxy-phosphacoumarin (4ag)

Yellowish solid; total yield: 84%; ^{31}P NMR (121 MHz, CDCl₃) δ 14.46 (4ag), 25.35 (3ag) the ratio of 3ag to 4ag is 1.3:1; ^{1}H NMR (300 MHz, CDCl₃) δ 1.11 (tt, $^{3}J_{H-}$ H = 6.6 Hz, 3H, OCH₂CH₃), 1.98 (qs, 3-CH₃ of 3ag), 2.36 (qs, of 3-PhCH₃, 3H), 3.49 (ds, 4-CH₃O of 4ag), 4.03 (m, 3H, OCH₂CH₃ of 3ag and 4ag), 7.15–8.11 (m, 8H, Ar-H); ^{13}C NMR (75 MHz, CDCl₃) δ 16.1 (d, $^{3}J_{P-C}$ = 4.5 Hz, POCH₂CH₃), 20.1 (m, 3-PhCH₃ and 3-CH₃ of 3ag), 55.5 (d, $^{1}J_{C-P}$ = 121.5 Hz, C-3 of 3ag), 60.8 (m, OCH₃ of 4ag) 64.4 (td, $^{2}J_{P-C}$ = 7.5 Hz, POCH₂CH₃), 106.1 (d, $^{1}J_{C-P}$ = 175.0 Hz, C-3 of 4ag), 118.0–137.9 (Ar-C), 149.8 (d, $^{2}J_{P-C}$ = 5.0 Hz, C-8a), 152.5 (C-8a of 3ag) 158.5 (C-4 of 4ag), 193.2 (C-4 of 3ag); HR-MS of [M+H]⁺ m/z Calcd: 331.1099. Found: 331.1095.

2.4. 3-Methoxy-2-methyl-3-phenyl-phosphachroman-2,4-dione (3bg) and 2,4-dimethoxy-3-phenyl-phosphacoumarin (4bg)

Yellowish solid; total yield: 84%; 31 P NMR (121 MHz, CDCl₃) δ 15.49 (**4bg**), 26.27 (**3bg**), the ratio of **3bg** to **4bg** is 4:1; 1 H NMR (300 MHz, CDCl₃) δ 2.00 (d, $^{3}J_{H-}$ P = 17.5 Hz, 2.4H, 3-CH₃ of **3bg**), 3.53–3.68 (m, 4-OCH₃ and POCH₃, 3.6H), 7.20–8.13 (m, Ar-H, 9H); 13 C NMR (75 MHz, CDCl₃) δ 19.5 (dd, $^{2}J_{P-C}$ = 4.5 Hz, 3-CH₃of **3bg**), 54.4 (4-OCH₃ of **4ag** and POCH₃), 57.0 (d, $^{1}J_{P-C}$ = 121.0 Hz, C-3 of **3bg**), 119.9–136.7 (Ar-C), 152.5 (*C*-8a), 160.0 (*C*-4 of **4bg**), 192.9 (*C*-4 of **3bg**); HR-MS of [M+H]⁺ m/z Calcd: 303.0786. Found: 303.0780.

2.5. 2-Ethoxy-3-methyl-3-(4-chlorophenyl)-phosphachroman-2,4-dione (3dg) and 2-ethoxy-3-(4-chlorophenyl)-4-methoxy-phosphacoumarin (4dg)

Yellowish solid; total yield: 81%; ³¹P NMR (121 MHz, CDCl₃) δ 14.10 (**4dg**, trace), 24.39 (**3dg**); ¹H NMR (300 MHz, CDCl₃) δ 1.13 (t, ³ J_{H-P} = 7.1 Hz, 3H, OCH₂C H_3),

1.96 (d, 3H, 3-C H_3), 4.06 (m, 2H, OC H_2 CH₃), 7.20–8.14 (m, Ar-H, 8H); ¹³C NMR (75 MHz, CDCl₃) δ 16.0 (d, ² J_{P-C} = 5.1 Hz, POCH₂CH₃), 19.3 (d, ² J_{P-C} = 5.0 Hz, 3-CH₃), 55.2 (d, ¹ J_{P-C} = 121.3 Hz, C-3), 64.4 (d, ² J_{P-C} = 7.9 Hz, POCH₂CH₃), 119.8–136.7 (Ar-C), 152.8 (d, ² J_{P-C} = 4.3 Hz, C-8a), 192.5 (C-4); HR-MS of [M+H]⁺ m/z Calcd: 350.0475. Found: 350.0472.

2.6. 2-Ethoxy-3-methyl-3-(4-cyanophenyl)-phosphachroman-2,4-dione (3eg) and 2-ethoxy-3-(4-cyanophenyl)-4-methoxy-phosphacoumarin (4eg)

Yellowish solid; total yield: 86%; ^{31}P NMR (121 MHz, CDCl₃) δ 13.03 (**4eg**), 23.22 (**3eg**), the ratio of **3eg** to **4eg** is 12:1; ^{1}H NMR (300 MHz, CDCl₃) δ 1.09 (t, $^{3}J_{H-}$ H = 6.9 Hz, 3H, OCH₂CH₃), 1.97 (ds, 2.8H, 3-CH₃ of **3eg**), 3.53 (s, 0.2H, 4-CH₃O of **4eg**), 4.05 (m, 2H, OCH₂CH₃ of **3eg** and **4eg**), 7.23–8.11 (m, 8H, Ar-H); ^{13}C NMR (75 MHz, CDCl₃) δ 16.1 (d, $^{3}J_{P-C}$ = 5.0 Hz, POCH₂CH₃), 19.4 (d, $^{2}J_{P-C}$ = 5.0 Hz, 3-CH₃ of **3eg**), 56.0 (d, $^{1}J_{P-C}$ = 120.5 Hz, C-3 of **3eg**), 64.7 (d, $^{2}J_{P-C}$ = 7.2 Hz, POCH₂CH₃), 112.0 (*C*N), 118.5–138.8 (Ar-C), 152.8 (*C*-8a of **3eg**), 192.1 (*C*-4 of **3eg**); HR-MS of [M+H]⁺ m/z Calcd: 342.0895. Found: 342.0896.

2.7. 3-Benzyl-2-ethoxy-3-(4-methylphenyl)-phosphachroman-2,4-dione (3ah)

Yellowish solid; mp 90–92 °C; yield: 72%; 31 P NMR (121 MHz, CDCl₃) δ 23.74; 1 H NMR (300 MHz, CDCl₃) δ 0.99 (t, $^{3}J_{\rm H-H}=6.8$ Hz, 3H, OCH₂CH₃), 2.35 (s, 3H, PhCH₃), 3.67–3.94 (m, 4H, OCH₂CH₃, PhCH₂), 6.99–8.00 (m, 13H, Ar-H); 13 C NMR (75 MHz, CDCl₃) δ 15.9 (d, $^{3}J_{\rm P-C}=5.4$ Hz, POCH₂CH₃), 21.0 (PhCH₃), 40.1 (PhCH₂), 61.3 (d, $^{1}J_{\rm P-C}=120.1$ Hz, C-3), 64.4 (d, $^{2}J_{\rm P-C}=7.9$ Hz, OCH₂CH₃), 119.4–136.1 (Ar-C), 152.5 (C-8a), 192.1 (C-4); HR-MS of [M+H]⁺ m/z Calcd: 407.1412. Found: 407.1415.

2.8. 4-Benzoxy-2-ethoxy-3-(4-methxylphenyl)-phosphacoumarin (4ah)

Yellowish solid; mp 83–85 °C; yield: 12%; ³¹P NMR (121 MHz, CDCl₃) δ 14.04, 14.18, 14.69; ¹H NMR (300 MHz, CDCl₃) δ 1.04, 1.46, 1.26 (tt, ³ $J_{\rm H-H}$ = 7.2 Hz, 3H, OCH₂C H_3), 2.32, 2.39, 2.45 (ts, 3H, PhC H_3), 4.01–4.07 (m, 2H, OC H_2 CH₃), 4.51–4.57 (m, 2H, PhC H_2 O), 7.28–7.78 (m, 13H, Ar-H); ¹³C NMR (75 MHz, CDCl₃) δ 15.9 (d, ³ $J_{\rm P-C}$ = 5.8 Hz, POCH₂CH₃), 19.9, 20.5, 21.3 (ts, PhCH₃), 63.8 (d, ² $J_{\rm P-C}$ = 6.5 Hz, POCH₂CH₃), 75.1 (PhCH₂O), 107.5 (d, ¹ $J_{\rm P-C}$ = 112.8 Hz, C-3), 118.5–138.3 (Ar-C), 149.8 (d, ² $J_{\rm P-C}$ = 5.1 Hz, C-8a), 157.8 (d, ² $J_{\rm P-C}$ = 20.0 Hz, C-4); HR-MS of [M+H]⁺ m/z Calcd: 407.1412. Found: 407.1417.

2.9. 3-Benzyl-2-ethoxy-3-phenyl-phosphachroman-2,4-dione (3ch)

Yellowish solid; mp 105–108 °C; yield: 51%; ³¹P NMR (121 MHz, CDCl₃) δ 23.57; ¹H NMR (300 MHz, CDCl₃) δ 0.96 (t, ³ $J_{\rm H-H}$ = 6.9 Hz, 3H, OCH₂CH₃), 3.87–3.95 (m, 4H, OCH₂CH₃, PhCH₂), 6.95–8.00 (m, 14H, Ar-H); ¹³C NMR (75 MHz, CDCl₃) δ 16.0 (OCH₂CH₃), 40.1 (3-PhCH₂), 61.7 (d, ¹ $J_{\rm P-C}$ = 119.0 Hz, C-3), 64.5 (d, ² $J_{\rm P-C}$ = 7.5 Hz, POCH₂CH₃), 118.0–136.3 (Ar-C), 152.6 (C-8a), 192.1 (C-4); HR-MS of [M+H]⁺ m/z Calcd: 317.0943. Found: 317.0942.

2.10. 4-Benzoxy-2-ethoxy-3-phenyl-phosphacoumarin (4ch)

Yellowish solid; mp 112–114 °C; yield: 31%; ³¹P NMR (121 MHz, CDCl₃) δ 13.92; ¹H NMR (300 MHz, CDCl₃) δ 1.14 (t, ³ $J_{\rm H-H}$ = 7.2 Hz, 3H, OCH₂CH₃), 4.07 (m, 2H, POCH₂CH₃), 4.62 (s, 2H, PhCH₂O), 7.16–7.44 (m, 14H, Ar-H); ¹³C NMR (75 MHz, CDCl₃) δ 16.2 (d, ³ $J_{\rm P-C}$ = 6.5 Hz, POCH₂CH₃), 63.9 (d, ² $J_{\rm P-C}$ = 6.2 Hz, POCH₂CH₃), 75.4 (PhCH₂O), 109.5 (C-3), 123.8–131.6 (Ar-C), 150.0 (d, ² $J_{\rm P-C}$ = 5.0 Hz, C-8a), 158.9 (d, ² $J_{\rm P-C}$ = 18.6 Hz, C-4); HR-MS of [M+H]⁺ m/z Calcd: 317.0943. Found: 317.0940.

2.11. 3-Benzyl-2-ethoxy-3-(4-chlorophenyl)-phosphachroman-2,4-dione (3dh) and 4-benzoxy-2-ethoxy-3-(4-chlorophenyl)-phosphacoumarin (4dh)

Yellowish solid; total yield: 83%; ^{31}P NMR (121 MHz, CDCl₃) δ 13.52 (**4dh**), 22.92 (**3dh**), the ratio of **3dh** to **4dh** is 13.2:1; ^{1}H NMR (300 MHz, CDCl₃) δ 1.00 (t, $^{3}J_{H-}$ H = 7.2 Hz, 3H, OCH₂CH₃), 3.80 (d, $^{3}J_{P-H}$ = 23.0 Hz, 1.9H, PhCH₂of **3dh**), 4.65 (s, PhCH₂O, 0.2H), 7.04–8.00 (m, Ar-H, 13H); ^{13}C NMR (75 MHz, CDCl₃) δ 15.9 (d, $^{2}J_{P-}$ C = 5.8 Hz, OCH₂CH₃), 39.9 (PhCH₂ of **3dh**), 61.1 (d, $^{1}J_{P-C}$ = 119.0 Hz, C-3 of **3dh**), 64.5 (d, $^{2}J_{P-C}$ = 7.9 Hz, OCH₂CH₃), 119.1–136.4 (Ar-C), 152.2 (d, $^{2}J_{P-C}$ = 4.3 Hz, C-8a), 191.5 (C-4 of **3dh**); HR-MS of [M+H]⁺ m/z Calcd: 427.0866. Found: 427.0862.

2.12. 3-Allyl-2-ethoxy-3-(4-chlorophenyl)-phosphachroman-2,4-dione (**3di**) and 4-alloxy-2-ethoxy-3-(4-chlorophenyl)-phosphacoumarin (**4di**)

Yellowish solid; total yield: 80%; 31 P NMR (121 MHz, CDCl₃) δ 13.12 (**4di**), 23.13 (**3di**), the ratio of **3di** to **4di** is 2.1:1; 1 H NMR (300 MHz, CDCl₃) δ 1.09 (m, $^{3}J_{H-H}$ = 7.2 Hz, 3H, OCH₂CH₃ of **3di** and **4di**), 2.97, 3.58 (m, about 1.3H, 3-CH₂CH=CH₂ of **3di**), 4.03 (m, about 2.6H, POCH₂CH₃ and 4-OCH₂CH=CH₂ of **4di**), 5.00 (dm, 0.66H, 3-CH₂CH=CH₂ of **3di**), 5.10 (dm, 0.33H, 4-OCH₂CH=CH₂ of **4di**), 5.56 (m, 0.66H, 3-CH₂CH=CH₂ of **3di**), 5.80 (m, 0.33H, 4-OCH₂CH=CH₂ of **4di**), 7.21–8.10 (m, 8H, Ar-H); 13 C NMR (75 MHz, CDCl₃) δ 16.1 (dd, $^{2}J_{P-C}$ = 5.1 Hz, POCH₂CH₃), 35.9 (3-CH₂CH=CH₂ of **3di**), 59.6 (d, $^{1}J_{P-C}$ = 120.5 Hz, C-3 of **3di**), 64.6 (dd, $^{2}J_{P-C}$ = 7.9 Hz, POCH₂CH₃), 74.2 (4-OCH₂CH=CH₂ of **4di**), 109.8 (d, $^{1}J_{P-C}$ = 172.8 Hz, C-3 of **4di**), 120.2–136.7 (Ar-C), 149.9 (d, $^{2}J_{P-C}$ = 5.7 Hz, C-8a of **4di**), 152.6 (d, $^{2}J_{P-C}$ = 5.0 Hz, C-8a of **3di**), 159.1 (d, $^{2}J_{P-C}$ = 18.7 Hz, C-4 of **4di**), 190.7 (C-4 of **3di**); HR-MS of [M+H]⁺ m/z Calcd: 377.0709. Found: 377.0701.

2.13. 3-Benzyl-2-ethoxy-3-(4-cyanophenyl)-phosphachroman-2,4-dione (3eh) and 4-benzoxy-2-ethoxy-3-(4-cyanophenyl)-phosphacoumarin (4eh)

Yellowish solid; total yield: 82%; ^{31}P NMR (121 MHz, CDCl₃) δ 12.73 (**4eh**), 21.87 (**3eh**), the ratio of **3eh** to **4eh** is 2.1:1; ^{1}H NMR (300 MHz, CDCl₃) δ 1.11 (dt, $^{3}J_{H-H}=7.2$ Hz, 3H, OCH₂CH₃), 3.85 (m, 3.4H, OCH₂CH₃ and PhCH₂of **3eh**), 4.62 (q, 0.6H, PhCH₂O), 6.92–7.74 (m, Ar-H, 13H); ^{13}C NMR (75 MHz, CDCl₃) δ 16.0 (dd, $^{2}J_{P-C}=5.0$ Hz, POCH₂CH₃), 39.9 (PhCH₂ of **3eh**), 61.4 (d, $^{1}J_{P-C}=119.0$ Hz, C-3 of **3eh**), 64.7 (d, $^{2}J_{P-C}=7.8$ Hz, POCH₂CH₃), 111.9 (CN), 124.9–136.9 (Ar-C), 150.2 (*C*-8a of **4eh**), 152.3 (d, $^{2}J_{P-C}=5.0$ Hz, *C*-8a pf **3eh**), 160.2 (d, $^{2}J_{P-C}=17.2$ Hz, C-4 of **4eh**), 191.1 (*C*-4 of **3eh**); HR-MS of [M+H]⁺ m/z Calcd: 418.1208. Found: 418.1204.

2.14. 3-(2-Bromophenyl-2-ethoxy-3-methyl-phosphachroman-2,4-dione (3fg) and 3-(2-bromophenyl-2-ethoxy-4-methoxy-phosphacoumarin (4fg)

Yellowish solid; total yield: 90%; ^{31}P NMR (121 MHz, CDCl₃) δ 12.95 (**4fg**), 22.76 (**3fg**), the ratio of **3fg** to **4fg** is 1:49; 1H NMR (300 MHz, CDCl₃) δ 1.09 (dt, $^{3}J_{H-H} = 7.3$ Hz, 3H, OCH₂CH₃), 1.99 (ds, 0.3H, 3-CH₃ of **3fg**), 3.51 (s, 0.2.7H, 4-CH₃O of **4fg**), 3.95 (m, 2H, OCH₂CH₃ of **3fg** and **4fg**), 7.11–8.14 (m, 8H, Ar-H); 13 C NMR (75 MHz, CDCl₃) δ 16.1 (dd, $^{3}J_{P-C} = 5.6$ Hz, POCH₂CH₃), 22.7 (3-CH₃ of **3fg**), 60.4 (d, $^{3}J_{P-C} = 15.8$ Hz, CH₃O of **4fg**), 64.0 (d, $^{2}J_{P-C} = 7.2$ Hz, POCH₂CH₃), 105.0 (dd, C-3 of **4fg**), 118.7–132.8 (Ar-C), 149.9 (C-8a of **4fg**), 159.3 (C-4 of **4fg**), 191.2 (C-4 of **3fg**); HR-MS of [M+H]⁺ m/z Calcd: 395.0048. Found: 395.0042.

2.15. 3-Benzyl-3-(2-bromophenyl)-2-ethoxy-phosphachroman-2,4- dione (3fh) and 4-benzoxy-3-(2-bromophenyl-2-ethoxy-phosphacoumarin (4fh)

Yellowish solid; total yield: 85%; ^{31}P NMR (121 MHz, CDCl₃) δ 12.85 (**4fh**), 22.31 (**3fh**), the ratio of **3fh** to **4fh** is 1:19; ^{1}H NMR (300 MHz, CDCl₃) δ 1.2 (dt, $^{3}J_{H-H} = 7.2$ Hz, 3H, OCH₂CH₃), 3.42 (m, 0.1H, PhC H_2 of **3fh**), 4.06 (m, 2H, OCH₂CH₃), 4.70 (m, 1.9H, PhC H_2 O of **3fh**), 7.14–7.77 (m, Ar-H, 13H); ^{13}C NMR (75 MHz, CDCl₃) δ 16.2 (dd, $^{2}J_{P-C} = 5.7$;Hz, POCH₂CH₃), 29.8 (PhCH₂ of **3fh**), 64.1 (d, $^{2}J_{P-C} = 7.2$ Hz, POCH₂CH₃), 106.6 (d, $^{2}J_{P-C} = 176.4$ Hz, C-3 of **3fh**), 123.9–133.4 (Ar-C), 150.1 (d, $^{2}J_{P-C} = 15.8$ Hz, C-8a of **4fh**), 158.9 (d, $^{2}J_{P-C} = 18.6$ Hz, C-4 of **4fh**); HR-MS of [M+H]⁺ m/z Calcd: 471.0361. Found: 471.0369.

2.16. 3-Allyl-3-(2-bromophenyl)-2-ethoxy-phosphachroman-2,4-dione (3fi) and 4-alloxy-3-(2-bromophenyl)-2-ethoxy-phosphacoumarin (4fi)

Yellowish solid; total yield: 90%; 31 P NMR (121 MHz, CDCl₃) δ 12.35 (**4fi**), 22.89 (**3fi**), the ratio of **3fi** to **4fi** is 1:49; 1 H NMR (300 MHz, CDCl₃) δ 1.09 (dm, $^{3}J_{H-H} = 6.9$ Hz, 3H, OCH₂CH₃ of **3fi** and **4fi**), 3.66 (d, trace), 4.16 (m, 4H, POCH₂CH₃ and 4-OCH₂CH=CH₂ of **4fi**), 5.17 (m, 2H, 4-OCH₂CH=CH₂ of **4fi**), 5.77 (m, 1H, 4-OCH₂CH=CH₂ of **4fi**), 7.18–7.86 (m, 8H, Ar-H); 13 C NMR (75 MHz, CDCl₃) δ 16.2 (dd, $^{2}J_{P-C} = 6.4$ Hz, POCH₂CH₃), 29.7 (3-CH₂CH=CH₂ of **3fi**), 64.1 (dd, $^{2}J_{P-C} = 6.5$ Hz, POCH₂CH₃), 73.5 (4-OCH₂CH=CH₂ of **4fi**), 106.6 (d, $^{1}J_{P-C} = 176.4$ Hz, C-3 of **4fi**), 118.5–133.3 (Ar-C), 149.9 (d, $^{2}J_{P-C} = 5.7$ Hz, C-8a of **4fi**), 158.6 (d, $^{2}J_{P-C} = 18.6$ Hz, C-4 of **4fi**); HR-MS of [M+H]⁺ m/z Calcd: 421.0204. Found: 421.0206.

3. Results and discussion

As shown in Scheme 1, there is an equilibrium between phosphachroman-2,4-diones (1) and phosphacoumarins (2), and the ratios of 1 to 2 in CDCl₃ at room temperature depend on their structures (see Table 1). The alkylation products phosphachromones (3) and phosphacoumarins (4) were obtained in good yields (77–90%) through K_2CO_3 -catalyzed reaction of 1 and 2 with different alkyl halides in various ratios (see Table 2).

In the presence of base, compounds **1** and **2** produced the corresponding ambident nucleophile, which can react with electrophiles, including acetic anhydride, *p*-toluenesulfonyl chloride (Ts-Cl), methyl sulfonyl chloride (Ms-Cl), diethoxylphosphoryl chloride

$$CO_{2}CH_{3}$$

$$P=0$$

$$OR^{1}$$

$$KOH$$

$$dry pyridine$$

$$R^{3} = Ac, DEP, Ts, Ms$$

$$R^{3} = Me, PhCH_{2}, H_{2}C=CHCH_{2}$$

$$R^{2} = H, 4'-Me, 4'-CI, 4'-CN, 2'-Br$$

$$R^{2}$$

$$R^{3} = Me, PhCH_{2}, H_{2}C=CHCH_{2}$$

Scheme 1. Reaction of phosphachroman-2,4-diones, 4-OH phosphacoumarins with acetic anhydride, *p*-toluenesulfonyl chloride (Ts-Cl), methylsulfonyl chloride (Ms-Cl), diethoxylphosphoryl chloride (DEP-Cl) and alkyl halides.

Table 1 Ratios of the intermediate products 1 and 2

Entry	1/2	\mathbb{R}^1	\mathbb{R}^2	Ratio ^a
1	1a/2a	CH ₂ CH ₃	4-CH ₃	2.5:1.0
2	1b/2b	CH_3	Н	7.3:1.0
3	1c/2c	CH ₂ CH	Н	8.0:1.0
4	1d/2d	CH ₂ CH ₃	4-Cl	9.3:1.0
5	1e/2e	CH_2CH_3	4-CN	7.7:1.0
6	1f/2f	CH ₂ CH	2-Br	5.2:1.0

^a Ratio of 1 to 2 determined by ³¹P NMR in CDCl₃.

Table 2 Yields and ratios of phosphachromones (3) and phosphacoumarins (4) from reaction of 1 and 2 with alkyl halides

Entry	3	4	\mathbb{R}^1	R^2	\mathbb{R}^3	Yielda (%)	Ratiob
1	3ag	4ag	CH ₂ CH ₃	4-CH ₃	CH ₃	84	1.3:1
2	3bg	4bg	CH_3	Н	CH_3	84	4:1
3	3dg	4dg	CH ₂ CH ₃	4-Cl	CH_3	81	c
4	3eg	4eg	CH ₂ CH ₃	4-CN	CH_3	86	11.5:1
5	3ah	4ah	CH ₂ CH ₃	4-CH3	PhCH ₂	79	1.3:1
6	3ch	4ch	CH ₂ CH ₃	H	PhCH ₂	82	1.6:1
7	3dh	4dh	CH ₂ CH ₃	4-Cl	PhCH ₂	83	13.2:1
8	3di	4di	CH ₂ CH ₃	4-Cl	Allyl	80	2.1:1
9	3eh	4eh	CH ₂ CH ₃	4-CN	PhCH ₂	82	2.1:1
10	3fg	4fg	CH ₂ CH ₃	2-Br	CH ₃	90	1:49
11	3fh	4fh	CH ₂ CH ₃	2-Br	PhCH ₂	85	1:19
12	3fi	4fi	CH_2CH_3	2-Br	Allyl	90	1:49

^a Total isolated yield.

b The ratio of 3 to 4.

^c Trace amount of 4dg.

Scheme 2. The proposed mechanism and the steric effect of the alkylation reaction.

(DEP-Cl) and alkyl halides. Addition of acetic anhydride, Ts-Cl, Ms-Cl, DEP-Cl in the reaction system only yielded *O*-modified products, while reaction of alkyl halides with the ambident nucleophile led to 3-alkylated (3) and *O*-substituted products (4).

We tried different reaction conditions including solvents (CH₂Cl₂, acetone, and acetonitrile) and bases (K₂CO₃, TEA, and DMAP), and the experimental results showed that the ratios of 3 to 4 were not remarkably affected by these factors. By introducing different substituted group R² to the benzene ring at the 3-position and changing the alkyl halides, we found that the ratios of the both greatly depended on steric effect (Scheme 2). For example, when Br is ortho-position substituted group on the benzene ring, 4 are prominent products, and the ratios of the both are from 1:19 to 1:49 (entries 10–12 in Table 2). When R³X is CH₃I, 3 are major products because methyl is a smaller group, and the ratios are from 1.3:1 to 13.2:1 (compare with entries 1, 2, 4 with 5–7 in Table 2). Interestingly, the ratios usually are high when R³ is 4-Cl (entries 3, 9 in Table 2). In addition, the ratios were also affected by the electronic effect. For example, the ratios became larger when electron-donating group CH₃ of R² was replaced with electron-withdrawing group CN for same R³. The electron-withdrawing group can improve the acidity of the 3-H of compound 1 and stabilize the negative ions at 3-position, which were favor to the nucleophilic reaction at 3-position.

In addition, 3 and 4, such as 3ah and 4ah, 3fh and 4fh, could be isolated by silica gel column chromatography. Unfortunately, other phosphachromones (3) and phosphacoumarins (4) could not be done because of their similar polarity.

4. Conclusion

We have developed a convenient and efficient method for the synthesis of phosphachromones and phosphacoumarins via the alkylation of phosphachroman-2,4-diones and phosphacoumarins. The ratios of phosphachromones and phosphacoumarins depend on steric and electronic effects of the substituent groups. Some of phosphachromone and phosphacoumarin derivatives could be isolated by silica gel column chromatography. This can provide opportunity for the screening of molecules with biological and medicinal activity.

Acknowledgments

This work was supported by the Excellent Dissertation Foundation of the Chinese Ministry of Education (No. 200222), the Excellent Young Teacher Program of MOE, P.R.C., the National Natural Science Foundation of China (Grant No. 20472042) and the Key Subject Foundation from Beijing Department of Education (XK100030514).

References

- [1] (a) L. Santana, E. Uriarte, F. Roleira, N. Milhazes, F. Borges, Curr. Med. Chem. 11 (2004) 3239;
 - (b) A. Girolami, M.T. Sartori, P. Simioni, Thromb. Res. 64 (1991) 627;
 - (c) S. Chen, M. Cho, K. Karlsberg, D. Zhou, Y.C. Yuan, J. Biol. Chem. 279 (2004) 48071;
 - (d) P.J. Houghton, T.Z. Woldemariam, A.I. Khan, A. Burke, N. Mahmood, Antiviral Res. 25 (1994) 235;
 - (e) A. Nohara, H. Kuriki, T. Ishiguro, T. Saijo, K. Ukawa, Y. Maki, Y. Sanno, J. Med. Chem. 22 (1979) 290.
- [2] (a) E. Budzisz, E. Brzezinska, U. Krajewska, M. Rozalski, Eur. J. Med. Chem. 38 (2003) 597;
 - (b) T. Ghosh, C. Bandyopadhyay, Tetrahedron Lett. 45 (2004) 6169;
 - (c) L.A. Goldoni, G. Cravotto, A. Penoni, S. Tollari, G. Palmisano, Synlett 6 (2005) 927;
 - (d) J. Tao, S. Hu, M. Pacholec, C.T. Walsh, Org. Lett. 5 (2003) 3233.
- [3] (a) F.H. Westheimer, Science 235 (1987) 1173;
 - (b) H. Seto, T. Kuzuyama, Nat. Prod. Rep. 16 (1999) 589.
- [4] (a) H. Kleszczynska, D. Bonarska, K. Bielecki, J. Sarapuk, Cell. Mol. Biol. Lett. 8 (2003) 55;
 - (b) T. Kasagami, T. Miyamoto, I. Yamamoto, Pest Manage. Sci. 58 (2002) 1107;
 - (c) Bielecki, J. Sarapuk, H. Kleszczynsk, J. Biosci. 59 (2004) 515;
 - (d) J.E. Franz, M.K. Mao, J.A. Sikorski, Glyphosate: A Unique Global Herbicide, American Chemical Society, Washington, DC, 1997.
- [5] (a) A.K. Bhattacharya, G. Thyagarajan, Chem. Rev. 81 (1981) 415;
 - (b) R. Engel, Synthesis of Carbon-Phosphorus Bonds, CRC Press, Boca Raton, FL, 1988;
 - (c) B.E. Maryanoff, A.B. Reitz, Chem. Rev. 89 (1989) 863;
 - (d) A.N. Pudovik, Chemistry of Organophosphorus Compounds, MIR, Moscow, 1989;
 - (e) J. Motoyoshiya, Trends Org. Chem. 7 (1998) 63;
 - (f) T. Rein, T.M. Pedersen, Synthesis (2002) 579;
 - (j) N. Bricklebank, Organophosphorus Chem. 33 (2003) 289.
- [6] (a) R. Engl, R. Engel, Handbook of Orgnophosphorus Chemistry, Marcel Dekker, New York, 1992;
 - (b) F.R. Hartley, The Chemistry of Organophosphorus Compounds, John Wiley & Sons, New York, 1996;
 - (c) L.D. Quin, A Guide to Organophosphorus Chemistry, John Wiley & Sons, New York, 2000.
- [7] (a) C.H. Chen, J.L.J. Fox, L. Lippert, J. Heterocycl. Chem. 24 (1987) 931;
 - (b) A. Bojilova, R. Nikolova, C. Ivanov, N.A. Rodios, A. Terzis, C.P. Raptopoulou, Tetrahedron 52 (1996) 12597.
- [8] (a) V.F. Mironov, A.A. Shtyrlina, E.N. Varaksina, Y.Y. Efremov, A.I. Konovalov, Russ. J. Org. Chem. 40 (2004) 1798;
 - (b) V.F. Mironov, I.A. Litvinov, A.A. Shtyrlina, A.T. Gubaidullin, R.R. Petrov, A.I. Konovalov, N.M.R.Z. Azancheev, Musin, Russ. J. Gen. Chem. (Translation of Zhurnal Obshchei Khimii) 70 (2000) 1046;
 - (c) V.F. Mironov, A.I. Konovalov, I.A. Litvinov, A.T. Gubaidullin, R.R. Petrov, A.A. Shtyrlina, T.A. Zyablikova, R.Z. Musin, N.M. Azancheev, A.V. Ilyasov, Russ. J. Gen. Chem. (Translation of Zhurnal Obshchei Khimii) 68 (1998) 1414.
- [9] X.S. Li, D.W. Zhang, H. Pang, F. Shen, H. Fu, Y.Y. Jiang, Y.F. Zhao, Org. Lett. 7 (2005) 4919.